

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

4.2 Experimento 2: Resistência e Resistores, Voltagem, Corrente e Lei de Ohm

4.2.1 Objetivos

- ✓ Fundamentar os conceitos de resistência e resistor.
- ✓ Conhecer o código de cores, utilizado para especificar resistores de película.
- ✓ Esclarecer o real sentido da Lei de Ohm.
- ✓ Distinguir um resistor ôhmico dos demais.
- ✓ Criar Modelos para a variação da resistência de resistores não Ôhmicos com a corrente ou com o tempo.
- ✓ Associar resistores em série ou paralelo e deduzir as relações algébricas para a resistência equivalente de um circuito.
- ✓ Definir resistividade de um material.

4.2.2 Materiais Necessários

- ✓ Placa contendo resistores, 1 diodo e, 1 led;
- √ 1 Bobina de cobre e 1 diodo;
- ✓ Plugs banana-banana e banana-jacaré;
- ✓ Fonte de c.c ajustável;
- ✓ Multímetro digital;
- ✓ Termômetro.

4.2.3 Fundamentação Teórica

A **resistência elétrica** de um meio material é a grandeza que expressa o grau de interferência deste meio material no transporte da carga elétrica, e em uma abordagem mais sofisticada ela expressa o grau de "não aproveitamento" da energia fornecida à carga para se mover (e assim pode ser identificada como uma *fonte de dissipação da energia elétrica fornecida*, fato este que discutiremos em futuro experimento). No SI a unidade de medida da resistência elétrica é o **ohm**, representado pela letra grega Ω .

A tecnologia moderna faz uso da resistência elétrica (doravante denominada simplesmente "resistência") desde o projeto de geradores a linhas de transmissão e "circuitos" que são utilizados em equipamentos elétricos. Portanto os *elementos resistivos*, ou simplesmente **resistores** são fabricados e fornecidos comercialmente e em larga escala para exercerem o papel de componentes em um "circuito elétrico".

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

Departamento de Engenharia e Ciências Exatas

Resistores comerciais podem ser classificados em *fixos* ou *variáveis*. Resistores fixos podem ser fabricados por diferentes métodos, resultando nos seguintes tipos principais: Resistor de *Fio* (fio metálico fino enrolado em torno de cilindro cerâmico) ou de *Filme* (que consiste em uma Película de Carbono ou uma Película Metálica enrolada em torno de cilindro de porcelana).

Os fabricantes fornecem *valores nominais* dos resistores comerciais, bem como sua a tolerância ("incerteza"), advinda do método de fabricação dos mesmos. No caso de resistores de filme, emprega-se um conjunto de anéis coloridos que circundam o resistor, empregando um **código de cores**, conforme Figura abaixo.

Resistores padrão possuem 4 faixas Resistores de precisão possuem 5 faixas Resistores de precisão possuem 5 faixas 23 Γαίχα 3 Faixa Multiplicador Tolerân

Código de Cores

Cor	1ª Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância	
Preto	0	0	0	x 1 Ω		
Marrom	1	1	1	x 10 Ω	+/- 1%	
Vermelho	2	2	2	x 100 Ω	+/- 2%	
Laranja	3	3	3	x 1K Ω		
Amarelo	4	4	4	x 10K Ω		
Verde	5	5	5	x 100K Ω	+/5%	
Azul	6	6	6	x 1M Ω	+/25%	
Violeta	7	7	7	x 10M Ω	+/1%	
Cinza	8	8	8		+/05%	
Branco	9	9	9			
Dourado				χ.1Ω	+/- 5%	
Prateado				x .01 Ω	+/- 10%	

Figura 1 - Códigos de cores para resistores

Definimos a Resistência de um condutor entre dois pontos quaisquer, aplicando a diferença de potencial V entre estes dois pontos e medindo a corrente i resultante. A resistência R é, então:

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas R=V/i

Após algum trabalho algébrico, esta relação pode ser reescrita na forma:

 $R = \rho L/A$

Onde ρ é a resistividade do material, L é o comprimento do condutor e A a seção reta do condutor. Esta Relação é válida para condutores isotrópicos homogêneos de seção reta uniforme.

Lei de Ohm: "Um dispositivo obedece a Lei de Ohm quando a sua resistência entre dois pontos quaisquer for independente do módulo e da polaridade da diferença de potencial aplicada entre aqueles pontos".

4.2.4 Procedimentos Experimentais

Parte 1 – Leitura e associação de Resistores

Para realizarmos *medidas diretas* da resistência, podemos usar o ohmímetro, que pode ser fornecido como parte de um instrumento versátil: o multímetro ("multiteste"). No uso deste equipamento, é importante sabermos qual sua incerteza de medida (lendo no manual fornecido pelo fabricante ou registrado no próprio aparelho). Usualmente, a incerteza é expressa em porcentagem do valor lido, que pode variar de acordo com a faixa de medida selecionada no aparelho.

A operação do ohmímetro será explicada pelo professor em aula. Preste atenção aos detalhes de operação do modelo específico do equipamento usado na aula.

O *objetivo* deste experimento será aprendermos a identificar resistores por seu código de cores, medirmos seu valor diretamente e compararmos valores e incertezas. Portanto, neste experimento devemos tomar o cuidado de calcular corretamente as incertezas na leitura do código de cores (fornecido pela tolerância) e na leitura do ohmímetro. Aproveite este experimento para sanar dúvidas pendentes, como, por exemplo, sobre número de algarismos significativos em uma leitura, determinação de incerteza e critérios de arredondamento.

- 1. Apresentamos na Figura 2, cinco resistores, um diodo e, um led. Realize inicialmente, a leitura do código de cores cada um dos resistores, determinado o valor da resistência R e da incerteza ΔR . Represente os valores como $R_N \pm \Delta R_N$. Anote os valores obtidos na Tabela 1.
- 2. Utilize o ohmímetro do multímetro para medir o valor da resistência R e da incerteza ΔR . Sugestão: denomine este valor de "valor medido", e represente-o por $R_M \pm \Delta R_M$. Anote os valores obtidos na Tabela 1.

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

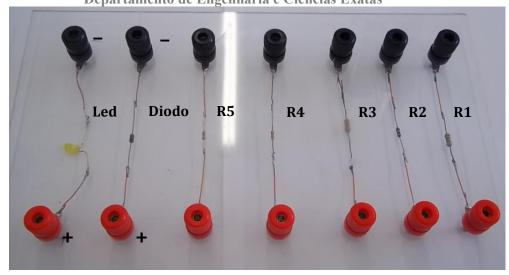


Figura 2 – Placa contendo cinco resistores, um diodo e, um led.

Tabela 1 – Valores nominais e medidos de resistência

Resistor	R1	R2	R3	R4	R5
R Nominal $(R_N \pm \Delta R_N)$					
R Medido $(R_M \pm \Delta R_M)$					

- 3. Compare os resultados de $R_N \pm \Delta R_N$ com $R_M \pm \Delta R_M$. Responda: O que pode ser concluído desta comparação?
- 4. Tome três resistores cuja resistência foi medida na primeira parte, denomine-os por R1, R2, R3, depois associe R1 e R3, R2 e R3 e R1, R2 e R3 em série, meça e registre a Resistência equivalente R_{eqs} de cada associação (lembre-se da incerteza).

Tabela 2 - Associação em série de resistores

R1 e R3	R2 e R3	R1, R2 e R3				

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

Departamento de Engenharia e Ciências Exatas

5. Associe os mesmos resistores em paralelo, meça e registre a Resistência Equivalente R_{eap} de cada associação.

Tabela 3 - Associação em paralelo de resistores

R1 e R3	R2 e R3	R1, R2 e R3

Parte 2 - Lei de Ohm

Detalhes Importantes

- Garanta que o multímetro esteja ligado em série para que opere como amperímetro;
- Garanta que o multímetro esteja ligado em paralelo para que opere como voltímetro;
- Atenção quanto ao número de algarismos significativos, incertezas (instrumentais e propagadas), numeração das tabelas e identificação dos gráficos. Seja coerente.
- 1. Preste atenção na orientação do professor para usar corretamente o multímetro, o amperímetro e a fonte de tensão (ddp).
- 2. Selecione um resistor e um diodo da placa de associação.
- 3. Meça com o ohmímetro o valor da resistência do diodo (meça a resistência em dois sentidos), anote os resultados nos espaços abaixo:

4. I	Repita o procedimento 3 para o led. Anote no espaço abaixo sua observação.

5. Monte um circuito, como o da Figura 2, utilizando a fonte de tensão contínua, um resistor (R), um voltímetro (V) e um Amperímetro (A).

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

Departamento de Engenharia e Ciências Exatas

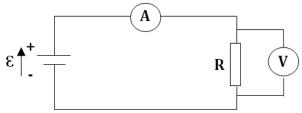


Figura 2 – Representação simbólica de um circuito com resistor, amperímetro e voltímetro.

- 6. Aplique diferentes tensões sobre cada um dos dispositivos selecionados, medindo e registrando estes valores e os da concomitante corrente elétrica. Organize seus resultados e os apresente na Tabela 4. Lembre-se de escolher valores positivos e negativos de tensão. As medidas para o resistor deve variar entre - 5V e + 5V de 1 em 1 V.
- 7. Para o diodo, faça uma leitura da corrente para uma tensão de 0,2 V. Depois, anote os valores de corrente para a tensão variando de 0 V a +0.8 V.

Tabela 4 – Valores medidos de tensão e corrente para o resistor e diodo.

Resistor	U(V)						
Resistor	I (A)						
Diodo	U(V)						
	I (A)						

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO Departamento de Engenharia e Ciências Exatas

4.2.5 O que Incluir no Relatório do Experimento

Parte 1 – Leitura e Associação de Resistores

- ightharpoonup Comparação dos resultados de R_N \pm ΔR_N com R_M \pm ΔR_M , para cada uma das resistências escolhidas. O que pode ser concluído desta comparação?
- Mostre que, dentro das faixas de incerteza, os valores medidos para as associações em série e paralelo (Tabelas 2 e3) são iguais aos valores equivalentes, quando aplicado às expressões para associação em série e em paralelo de resistores.

$$S\'{e}rie: R_{eq}^{s\'{e}rie} = R_1 + R_2 + ... + R_n$$

Paralelo:
$$\frac{1}{R_{eq}^{Paralelo}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Parte 2 - Lei de Ohm

- Construa um gráfico de V em função de i para o resistor. Este gráfico deve ser feito em papel milimetrado. Para o diodo e o led, faça um gráfico de I em função de V utilizando programas de computador. Se para um dado dispositivo observa-se um intervalo no gráfico que evidencia um comportamento linear, então, em tal intervalo, ele é dito "ôhmico".
- ightharpoonup Obtenha o coeficiente angular m, do **gráfico do resistor**, assumindo V = m I (ajuste linear). Verifique se dentro da faixa de incerteza o coeficiente angular (m), obtido do ajuste, é numericamente igual ao valor da resistência nominal (R_N) e medida (R_M) e determine o valor do desvio padrão.
- Para o led e diodo utilize um programa de computador e tente também ajustar uma curva exponencial e um polinômio de grau 2 aos dados experimentais. Responda qual ajuste reduziu o valor do desvio padrão? Por que ? (procure na literatura).
- > Qual dos três componentes, resistor, led e diodo são materiais ôhmicos ? Justifique.
- Explique o que é um diodo e quais suas principais aplicações práticas.
- Explique o que é um led e quais suas principais aplicações práticas.
- ➤ Por que não há passagem de corrente elétrica no diodo, quando ligado em 2 V ?